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Consider a linearC∗-action on the smooth germX = (Cn+1, 0). This action is completely deter-
mined by a collection ofn+1 integer weights defined from its canonical diagonal form. Leta, b, c
be the numbers of positive, negative and zero weights, respectively. Denote byλ = (λ1, · · · , λa)
the positive and by−µ = (−µ1, · · · ,−µb) the negative weights of the action. The authors prove
that the quotient germY can be presented as the direct productY0×F , whereY0 is the weighted
cone over the direct productPa−1

λ ×Pb−1
µ of weighted projective spaces andF is ac-dimensional

smooth germ. Let(Ω.
X , d) be the de Rham complex of regular holomorphic differential forms on

X. Denote byξ the Euler vector field generating theC∗-action, byιξ the contraction alongξ and
by Lξ = ιξd + dιξ the Lie derivative. The authors calculate the local cohomology groups with
support in{0} ⊂ Y of theOY -modulesΩp

X = {ω ∈ Ωp
X : Lξ(ω) = 0} andΩp

ξ = Ker{ιξ: Ωp
X →

Ωp−1
X } for p≥ 0.
Let f :X →C be the germ of an analytic function that is invariant under theC∗-action. Thus,

f can be considered as a function germf :Y →C. Under our assumptions the 1-formdf belongs
to Ω1

X andΩ1
ξ. Therefore the two complexes ofOY -modules(Ω.

X , df∧) and(Ω.
ξ, df∧) are well

defined. The authors compute the cohomology of these complexes in the case wheref has an
isolated critical point at the origin{0} ⊂ Y . They prove that by analogy with the case of a function
with isolated critical point on a smooth germ the dimension ofHn+1(Ω.

X , df∧)∼= Ωn+1
X /df ∧Ωn

X

may be considered as a multiplicity of the critical point, although there are some cases where
f has a critical point but the multiplicity is equal to zero. This multiplicity, like all dimensions
of the lower cohomology groups, behaves well under a deformation off . An explicit expression
for the Gauss-Manin connection associated with a 1-parameter deformation of such a function is
obtained. It turns out that this connextion is regular singular. Properties of a function invariant
under real or symplecticC∗-actions are discussed in detail.
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